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Abstract—With the matter of secure communication between
devices, and especially for IoT devices, more and more applica-
tions need trustful protocols to communicate using public key
cryptography. Elliptic curve cryptography is nowadays a very
secure and efficient public key cryptography method. One of
the most recent and secure curve is Curve25519 and one of its
failure is attack on low-order elements during a Diffie-Hellman
key exchange. This document demonstrates that an attack using
an order 4 point is possible on an embedded system with a simple
power analysis, pointing out every IoT using Curve255119 as a
cryptographic method, a potential target to side-channel attacks.

I. INTRODUCTION

Elliptic Curve Cryptography (ECC) has been introduced in
1985 by Neal Koblitz [1] and Victor S. Miller [2] as a new
cryptographic method that can concurrence e.g. RSA [3] or
DSA [4]. Since then, ECC has become a popular method for
cryptography because it can offer the same level of security as
other cryptographic method by using a shorter public key and
faster computations. This asset makes ECC one of the most
explored cryptographic mean in todays security issues.

In 2006, Daniel J. Bernstein proposed the Curve25519 [5]
as a new secure elliptic curve. The key exchange protocol
X25519 is based on Diffie-Hellman key exchange protocol
using Curve25519 and have been designed to be efficient,
secure and easy to implement. Curve25519 has been adopted
by IETF as one of the next generation curve for the widely
used cryptography standard on Internet, TLS [6].

More recently, Daniel Genkin, and Luke Valenta and Yuval
Yarom have successfully exploited a failure in X25519 with
a software based attack using order 4 elements [7]. Contrary
to Flush+Reload method presented in the previous paper, this
paper is focus on a power consumption SPA, showing simple
power analysis is also successful method to extract the secret
information.

To confirm order 4 elements can be a threat to X25519,
our study use the existing open source library µNaCl devel-
oped in [8] to implement scalar multiplication (SCM) over
Curve25519 on Arduino UNO and perform a side-channel
attack (SCA) to do a simple power analysis (SPA) and retrieve
secret information in X25519 using low-order element.
This research proves Curve25519 possess dangerous elements

for cryptographic use, and confirms the possibility of SPA
exploiting this failure without memory access such as conven-
tional methods.

After explaining the mathematical fundamentals used in
ECC, we will explain the plan of the attack and the setup
we used to, finally present our results and the conclusion we
can draw from them.

II. FUNDAMENTALS

A. Elliptic Curve

Let denote the finite field Fp defined by it characteristic p,
a prime number. And let E be the elliptic curve defined over
the prime field Fp in the simplified Weierstrass form [9].

E : y2 = x3 + ax+ b, a, b ∈ Fp (1)

We say that a point is on the elliptic curve if it is a rational
point. Every rational point including the point at infinity O
forms the additive abelian group E(Fp).

Elliptic curve cryptography using general type of Elliptic
curve is not efficient and is also not secure. In fact, computa-
tion of ECA and ECD needs inversion which is a very heavy
operation on finite fields with a big prime number. The next
section will introduce a particular type of elliptic curve that
can do calculation without inversion.

B. Montgomery Curve

The Montgomery curves as defined in [10] is defined as
follows:

E : By2 = x3 +Ax2 + x (2)

Where A,B ∈ Fp and where B(A2 − 4) ̸= 0 (mod p).
By moving to projective coordinates, a rational point P =
(x, y) on Montgomery curve is represented with coordinates
P = (X : Z) where x = X/Z for Z ̸= 0.

• ECA with Montgomery Curve
Let P = (Xi : Zi) and Q = (Xj : Zj) be two different

rational points. Let also consider the points represented by
U = P − Q with coordinates U = (Xi−j : Zi−j). Their



addition R = P +Q have coordinates R = (Xi+j : Zi+j) and
are calculated as follows:

Xi+j=Zi−j [(Xi−Zi)(Xj+Zj)+(Xi+Zi)(Xj−Zj)]
2

Zi+j=Xi−j [(Xi−Zi)(Xj+Zj)−(Xi+Zi)(Xj−Zj)]
2 (3)

Algorithm 1 ECA

Input: P = (Xi, Zi), Q = (Xj , Zj), U = (Xi−j , Zi−j)
Output: R = (Xi+j , Zi+j)

1: t1, t2, t3, t4, t5, t6, t7
2: t1 = xi − zi
3: t2 = xj + zj
4: t3 = xi + zi
5: t4 = xj − zj
6: t5 = t1 · t2
7: t6 = t3 · t4
8: t7 = t5 + t6
9: t7 = t7 · t7

10: Xi+j = Zi−j · t7
11: t7 = t5 − t6
12: t7 = t7 · t7
13: Zi+j = Xi−j · t7

• ECD with Montgomery Curve
Let P = (X : Z) be a rational point. Consider the point
addition R = P + P , where R = (XR : ZR) is defined as
follows:

XR = (X + Z)2(X − Z)2

T = (X + Z)2 − (X − Z)2

ZR = T [(X − Z)2 + A+2
4 · T ]

(4)

Algorithm 2 ECD

Input: P (X,Z), α = A+2
4

Output: 2P (X2, Z2)
1: t1, t2, t3
2: t1 = X + Z
3: t1 = t1 · t1
4: t2 = X − Z
5: t2 = t2 · t2
6: X2 = t1 · t2
7: t1 = t1 − t2
8: t3 = α · t1
9: t2 = t3 + t2

10: Z2 = t1 · t2

With the Montgomery curves, ECA and ECD are more
efficient and do not rely on inversion operations. However, as
a consequence of this representation, P − Q must be known
in order to compute P + Q and by this fact making the
computation of y coordinate in this representation unnecessary.

Elliptic Curve Diffie-Hellman (ECDH) based cryptography
relies on scalar multiplication (SCM) over the elliptic curve
to generate a session key. During this operation the algorithm
can potentially be attacked.

C. Montgomery Ladder (ML)

The Montgomery ladder is an algorithm introduced in [10],
and is an efficient method to perform SCM for a rational point
P and a scalar s = (sn−1, sn−2 . . . s1, s0)2. The ML is an
efficient SCM technique and is calculated as follows:

Algorithm 3 SCM with Montgomery Ladder

Input: P , s = (sn−1, sn−2 . . . s1, s0)2
Output: T1 = [s]P

1: T1 ← O
2: T2 ← P
3: for i = n− 1 to 0 do do
4: if si = 1 then
5: T1 ← T1 + T2

6: T2 ← 2T2

7: else
8: T2 ← T1 + T2

9: T1 ← 2T1

10: end if
11: end for
12: return T1

D. Curve25519

The curve Curve25519 is a Montgomery curve introduced
by Daniel J. Bernstein [5] in 2006. This curve has received
a great interest in modern cryptography and is at this day
used in hundreds of applications for its efficiency and rapidity.
Curve25519 is defined over prime field Fq of order q = 2255−
19 and its equation is defined as follows:

E25519 : y2 = x3 + 486662x2 + x (5)

Curve25519 has characteristic low-order points, (0, 0) on the
affine coordinates is a order 2 point and (1,±

√
486664) is a

order 4 point over Fq .

E. Side-channel Attack (SCA)

Side-channel attack [11] is the method of analyzing the
physical behavior of a cryptographic module to recover secret
information.

A cryptographic module is included on an integrated circuit
(IC) and is composed of numerous CMOS gates handling
secret information. With the cryptographic processing, a cur-
rent accompanying the switching of the MOS transistor is
generated, causing fluctuations in the power supply voltage
and electromagnetic radiation. The number of gates changing
state depends on plain text, ciphertext, and secret key.

In other words, by observing unintended physical data
(or so-called side-channel information) at the time of cryp-
tographic processing, there is a possibility of leaking the
secret information. The consumption level of IC is different
when switching from low to high and the opposite. SCA
takes advantage of this characteristic to analyze either power
consumption or electromagnetic field radiations of the IC.
Analyzing power consumption to visually examine its trace is
called simple power analysis (SPA).



III. IMPLEMENTATION

A. Computational Environment

This section describes the means used during the experi-
ments to perform SCA on Curve25519 with Arduino UNO.
As the values of Curve25519 are contained in the prime field
of characteristic q = 2255−19, one value should be interpreted
as a 256 bits machine word.

Working with a precision arithmetic library is necessary to
store these values (the secret key, base points’ coordinates,
etc.).

The chosen library to work on Curve25519 is the µNaCl
library [8]. This library is designed to perform ECC on
Curve25519 for AVR microcontroller. This precision arith-
metic library does manage addition, subtraction, multiplication
and modular operations with 256 bits variables, with very
efficient use of memory.

The three algorithms ECA (Alg. 1), ECD (Alg. 2) and ML
(Alg. 3) have been implemented as described above, using
µNaCl library for multiprecision arithmetic. To perform a
single SCM using ML, we need at least 580Bytes of space
in RAM using the µNaCl library. The maximum memory
consumption is during the ML when performing an ECA. In
fact at that moment, there is,

18 · 256 bits + 4 · 8 bits = 4640 bits = 580 Bytes

of memory used. (256 for alpha, 256 for the prime, 256 for
the scalar, 2 · 256 for the point P and 2 · 256 for point [s]P ,
4 ·256 and 4 ·8 in temporary values of ML function and 7 ·256
for temporary value in ECA function.)

TABLE I
ARDUINO UNO SPECIFICATIONS

CPU ATmega328P
Flash 32K bytes

Memory 2K bytes
Language C and Arduino functions
Compiler avr-gcc

B. SCA of Order 4 Point

Scenario of Attack: For the sake of the following
explanation we will imagine a scenario of attack in which
an attacker will fraudulently introduce a point of order 4 in a
ECC method. We will choose EC ElGamal cryptography (as
introduced in [1]), where the attacker replace the ciphertext
(C1, C2) with (P ,C2) during decrypting phase of the algo-
rithm. As a consequence, calculation of SCM will append
involving point P of order 4 and endangered the secret key
involved.

In this paper, order 4 point is used for SCA to estimate
secret key. As it is known, there is a subgroup of order 4 since
Montgomery curves’ group order is divisible by 4 [10]. This
doesn’t mean that the curve always has an order 4 point. There
is not order 4 point when the subgroup is isomorphic with
Z2×Z2 however Curve25519 has it. Then, let this order 4 point

P define as a chosen-ciphertext. P = (X = β : Z = β), β ̸= 0
when use projective coordinates. The result of doubling P is
order 2 point 2P , represented by 2P = (X = 0 : Z ̸= 0).
3P = P + 2P is same with P on the projective coordinates
because the y-coordinate of 3P is just y-axis opposition of
P and there is no need to consider about y-coordinate. In
addition, point at infinity O is defined O = (X ̸= 0 : Z = 0).
The relations between these points are as follows:

O + P = P , O + 2P = 2P

P + P = 2P , P + 2P = P , 2P + 2P = O

In other words, during SCM with ML, the outcome of every
operation is within those 3 rational points.

In Fig. 1, each state represents the pair of value [T1, T2]
(Alg. 3), and it shows relation of a current state and the next
state. The transitions between states are divided into two cases
Ka and Kb also give information on the key value(whereas the
key bit is 1 or 0.) For example, Ka : 0 means the case is Ka

and the key bit is 0. These transitions are defined as follows:

Fig. 1. Flow of SCM

In each case, Eq. (4) becomes

• Case : Ka

XR = (0 + θ)2 · (0− θ)2 = θ2 · θ2 = θ
T = (θ + 0)2 − (θ − 0)2 = 0
ZR = 0 · [(θ − 0)2 + A+2

4 · 0] = 0
(6)

• Case : Kb

XR = (θ + θ)2 · (θ − θ)2 = θ2 · 0 = 0
T = (θ + θ)2 − (θ − θ)2 = θ
ZR = θ · [(θ − θ)2 + A+2

4 · θ] = θ
(7)

with θ a big number that generates rational point for conve-
nience.

The value 0 is used for the XR calculation of Eq. (7), on
the other hand, Eq. (6) doesn’t use. Moreover, ZR calculation
of Eq. (6) has 0 value because T is 0 and Eq. (7) calculates
the huge number. For each calculation, we can spot a multipli-
cation being a non-zero multiplication or a zero multiplication
depending on the bits of the secret key. Since the power
consumption of calculation using 0 is considered to be smaller
than others, the secret key can be retrieved using the method
described in Fig. 1. This is the method we decided to introduce
to recover secret information using order 4 point by SPA.



IV. EXPERIMENTAL RESULTS

The setup for this experiment is: an Arduino UNO flashed
with ML algorithm and an oscilloscope (Agilent Technologies
DSOS104A). The attack is performed as explained in Sec-
tion III-B. The base point used to compute SCM is order of
4: P (see Apendix.)

This point is intentionally chosen with big coordinates
because if the base point has small coordinate, the first loops of
ML give too low power consumption differences between zero
and non-zero multiplication, and it is not possible to retrieve
all the secret key coordinates.

The secret key s (see Apendix) is a 256 bits value initialized
randomly.

To make the lecture of the trace easier, a signal is raised
with an analog pin during the interesting multiplication(in this
paper focus on ZR calculations of Eq. (6) and Eq. (7)). As
the complete SCM is about 7 seconds long, we will focus on
the first eight bits calculation, but the same result is visible
for all the bits of the secret key. The results of the attack are
represented in Fig. 2a.

As measurement was noisy, we have run 80 times with
the same encryption, and average the traces to obtain the
trace in Fig. 2b, making difference between zero and non-zero
multiplications more visible for human eyes.

During the marked multiplication, we can see for the two
first times, the power consumption is low and on the next
loop, we can see a higher power consumption. The two first
invocation of multiplication is zero multiplication and so the
energy needed to set the final value to zero is low. In the third
invocation of the function, we have a big number with another
big number multiplication meaning the number of CMOS to
switch active is big and also the energy needed is greater than
a zero multiplication.

From above results, we can recover the secret key value us-
ing Fig. 1. Initially, state is [O, P ] and low power consumption
(case Ka). Therefore, the key is 0 and next state is [O, P ]. The
second loop is also same pattern. Then, third loop is higher
power consumption (case Kb), next state is [P , 2P ] with key
value 1. We can say 4th key value is 1 in the same way as
previous processes. These values are completely same as the
secret key s.

In our study, we have shown that attacking Curve25519
with Montgomery implementation using order 4 point attack
is possible with an SPA on Arduino UNO. In other words, the
most popular board for embedded applications is not secure
even with a high secure elliptic curve. Also even if X25519 is
highly secure key exchange agreement, it is possible to attack
it, (and even with cheap equipment and low-level method)
making the method inefficient when using low-order points of
Curve25519.

Possible amelioration of the method: To make this attack
efficient when used with an SPA, it is possible to train a
machine to recognize zero and non-zero multiplication on the
power trace. Adding artificial intelligence (AI) would make
the attack more exploitable and trustful than the human eye
analysis.

(a) Single measure

(b) Averaging over 80 runs

Fig. 2. Power trace of ML implementation on Curve25519 using order 4
point as base point.

This study did not explore this possibility, but using AI for
SPA seems to be an efficient improvement for this attack.

V. CONCLUSION

In this work, we demonstrate a SCA against ML implemen-
tation of Curve25519 using the branchless formula of ECA and
ECD. This attack has focused on Curve25519 vulnerability for
order 4 elements. We find out that recover the secret key used
in X25519 is possible when implemented on Arduino UNO
by analyzing the power trace of ML algorithm.
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APENDIX

s = 257672452178540736055505384727948438356816618

31502188636038000083796091605992

P = (10533907170248871065437168357322056829449152

4162238083684354190540340853667967, 1053390717

024887106543716835732205682944915241622380836

84354190540340853667967)
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